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SUMMARY

Recently, several papers have appeared in the CFD literature, proposing an idealized instability problem
as a benchmark for discriminating among numerical algorithms for two-dimensional Navier–Stokes
�ows. The problem is a double shear layer simulated at coarse resolution and with a prescribed interface
perturbation. A variety of second-order accurate schemes have been tested, with all results falling into
one of two solution patterns—one pattern with two eddies and the other with three eddies. In the
literature, there is no fast-and-�rm rule to predict the results of any particular algorithm. However, it
is asserted that the two-eddy solution is correct. Our own research has led to two conclusions. First,
the appearance of the third eddy is tied up with small details of the truncation error; we illustrate this
point by prescribing small changes that lead to reversal of the appearance=disappearance of the third
eddy in several schemes. Second, we discuss the realizability of the two solutions and suggest that the
three-eddy solution is the more physical. Overall, we conclude that this problem is a poor choice of
benchmark to discriminate among numerical algorithms. Copyright ? 2002 John Wiley & Sons, Ltd.
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1. INTRODUCTION

We investigate the formation of spurious vortical structures in time-dependent simulations of
incompressible �ow. Our work is motivated by previous studies (Reference [1], and the ref-
erences therein) that have documented the formation of ‘spurious eddies’ in coarsely resolved
simulations of 2D vortex-street �ows. In general, we seek an understanding and control of
the numerical mechanisms that underlie the formation of these spurious structures. Our study
demonstrates the sensitivity of the simulated behaviour of �ows to the numerical discretiza-
tion of the advective terms, especially when vorticity dynamics plays an essential role in
�ow evolution. This sensitivity is of particular relevance to large-eddy simulation (LES) of
turbulent �ows. In LES, the advective term discretization can alter the simulated large-eddy
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Figure 1. Vorticity isolines for correct (left) and spurious (right) solutions. Negative values are dashed.

structures and subsequently overwhelm the e�ects of unresolved scales estimated by a subgrid
scale model. An understanding of these issues will lead to better algorithms, including the
consistent design of spatio-temporal �lters and subgrid scale models.
The modelled �ow is the evolution of a double shear-layer on a doubly periodic domain,

governed by the incompressible Navier–Stokes equations
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where ui (i=1; 2 refers to the space co-ordinates x; y) are the velocity components, p is the
pressure, Re is the Reynolds number, and t is the time; all variables are non-dimensionalized.
With � determining the shear layer thickness, the initial condition

u=

{
tanh((y − 0:25)�) if y60:5

tanh((0:75− y)�) if y¿0:5
(2)

results in hydrodynamically unstable �ow, and so one may expect di�erent �ow realizations
depending on the details of the initial perturbation. Although we specify only the excitation
of the primary mode (i.e. wavenumber one),† the truncation error of the numerical scheme
presents an additional perturbation, whose magnitude depends on the resolution length scale.
For a �xed Reynolds number and for all considered numerical algorithms, this problem has the
converged solution‡ of a regular vortex street (cf. left panel in Figure 1). At coarse resolutions,
some algorithms evince a spurious eddy embedded between the two primary vortices (e.g. right
panel in Figure 1), the apparent result of a wavenumber two perturbation.

†Following [1], we consider a small sinusoidal perturbation of the initial spanwise velocity, v= v′ sin(2�x).
‡The details of this convergence depend both on the Reynolds number and the advective scheme employed.
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The converged solution is most likely a metastable mathematical peculiarity unrealizable in
nature.§ Nonetheless, the task of isolating the precise characteristics of the schemes that lead
to the spurious eddies is an interesting challenge.
We have performed hundreds of numerical experiments using various Godunov methods [2],

and various non-oscillatory forward-in-time (NFT) semi-Lagrangian=Eulerian schemes [3]. Our
experiments identify no simple, single explanation for the formation of the spurious eddy valid
for all the tested schemes. The only universal conclusion is that the generation of spurious
eddies is tied to �ne details of the truncation error. For example, depending on the detailed
form of the Godunov �ux spurious eddies may or may not appear. In the class of NFT
schemes, those based on semi-Lagrangian (i.e. trajectory) integrals tend to produce ‘correct’
solutions, whereas Eulerian (i.e. control volume) integrals tend to exhibit the spurious eddy.¶

We will employ a heuristic analysis of the vorticity equation implied by the discretized mo-
mentum equations, and identify unphysical forcings originating in the truncation error terms.
We conjecture that these numerical forcings are responsible for the spurious eddies. To verify
this hypothesis, we develop modi�cations of upwind methods and demonstrate their e�ective-
ness in eliminating the spurious eddies.
The paper is organized as follows. In Section 2, we outline the numerical methods employed.

In Section 3, we summarize the solutions obtained with di�erent methods. In Section 4, we
present a vorticity argument that aims at explaining the formation of spurious solutions, and
propose remedies for suppressing the spurious eddies. Remarks in Section 5 conclude the
paper.

2. NUMERICAL METHODS

2.1. Godunov-type methods

To take full advantage of the Godunov methods designed for hyperbolic conservation laws,
the incompressible equations (1) are cast in a compressible format by means of arti�cial-
compressibility, where at each instant t, the augmented pseudocompressible system
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is integrated in a pseudotime � to a steady state, assuming an arti�cial speed of sound√
� (�≡ 1 in this study). Here, ũi denotes the solution at the instant t, whereas all tilde-free

variables are allowed (in principle) to vary in the pseudotime �∈ [t; t +�t]. The attenuation
forcing on the right-hand side (rhs) of the momentum equation damps the �ow divergence
to zero (given @ũi=@xi=0) at the rate �≡ (�t)−1. In the steady state at �= t +�t, all @=@�
terms vanish and the damping term on the rhs becomes @ui=@t, i.e. the ui solution becomes

§ For a solenoidal white-noise initial perturbation, our experiments showed that all solutions evince the secondary
eddy for all methods considered in this study.
¶Thus, not all upwind-biased dissipative methods result in spurious vortices!
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the ũi solution at t + �t. The default time integration with respect to � employs a fourth-
order Runge–Kutta scheme, while a non-linear multigrid method is used to accelerate the
convergence toward the steady state.|| The viscous terms are discretized by standard central
di�erences. The reader interested in further details is referred to [2; 4] and the references
therein.
In all Godunov methods considered in this study, the advective �ux derivatives on the lhs

of (3) are discretized at the centre of the control volume using the values of the intercell
�uxes:

Ei+1=2 = 1
2(EL + ER)− 1

2 |A|(UR −UL) (4)

where A approximates @E=@U (the entries of the Jacoby matrix), E is the x-direction advective
�ux

E≡




u

u2 + p
uv


 (5)

and EL =EL(UL) and ER =ER(UR) denote the left and right states of the �ux, respectively,
at the cell face of the computational volume. Similarly, UL and UR are the left and right
states, respectively, of the vector of the primitive variables U =(p; u; v)T at the cell face of
the computational volume. The second term in the rhs of (4) is the wave-speed-dependent
term (WST).
The de�nition of the intercell �ux function distinguishes the di�erent Godunov schemes

implemented in this study; these schemes are the Rusanov, Lax–Friedrichs (LF), Einfeldt’s
variant of Harten–Lax–van Leer (HLLE), Toro’s �rst-order centred (FORCE) (details of these
schemes can be found in [5]) and uniformly high-order (UHO) characteristic based [2]. All
listed Godunov schemes require calculating the left and right states of the primitive variables
at the cell faces. Here, two interpolation schemes have been employed: (a) the ‘third-order’
Lagrangian interpolator [6]; and (b) the MUSCL scheme [7]. For a comprehensive review of
the listed schemes, see [8].

2.2. NFT approach

Our basic NFT approach for approximating integrals of the governing equations of motion
(1) on a discrete mesh is second-order accurate in space and time. The two optional model
algorithms, Eulerian and semi-Lagrangian, correspond to the point-wise and trajectory-wise
integrals of the mathematically equivalent evolution equations (1) and
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respectively, D=Dt denotes the material derivative.

||Sensitivity tests using various time-stepping schemes both with and without the multigrid accelerator shows that
the formation of spurious vortices depends principally on the advective scheme employed. In particular, � has no
e�ect on the occurrence of spurious eddies, but does a�ect the convergence rate of the multigrid accelerator.
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We assume all variables are co-located—a choice important for the e�cacy of the uni�ed
semi-Lagrangian=Eulerian NFT approach [3]—and write the resulting �nite-di�erence approx-
imations in the compact form

�n+1i =LEi(�̃) + 0:5�tFn+1i (7)

Here, the indices i and n denote the spatial and temporal location on a (logically) rectangular
Cartesian mesh; LE denotes either an advective semi-Lagrangian or a �ux-form Eulerian NFT
transport operator (Sections 3.1 and 3.2 in [3], respectively);∗∗ �̃≡�n + 0:5�tFn. Transport-
ing the auxiliary �eld �̃ (rather than the �uid variable alone) has been shown to be important
for maintaining the second-order accuracy and the stability of forward-in-time approximations
[10]. In the Eulerian algorithm, transporting �̃ is a consequence of compensating the �rst-
order truncation error proportional to the divergence of the advective �ux of the rhs of the
evolution equations, while in the semi-Lagrangian algorithm it derives straightforwardly from
the trapezoidal-rule approximation for the integral on the rhs; see References [3; 9], for further
discussions.
Completion of the model algorithm requires formulating the boundary value problem for

pressure implied by the mass continuity constraint ∇ · u=0. In [3], we have outlined the
essential steps of this fairly standard projection procedure. The resulting elliptic equation is
solved, subject to appropriate boundary conditions, using a pre-conditioned non-symmetric
Krylov solver.

3. RESULTS

We have used the algorithms outlined in the preceding section on both the ‘coarse’ (128× 128)
and the ‘�ne’ (256× 256) grid; selected computations were also performed on a 512× 512
grid. Together this has led to a large series of numerical experiments gathering systematic ev-
idence about the response of various schemes. All experiments assumed the Reynolds number
Re=10000 in (1), the thickness of the shear layer �=100 in (2), and the amplitude of the
initial span-wise perturbation v′=0:05. Depending on the Reynolds number and the thickness
of the shear layer spurious vortices may or may not appear on coarser grids. The larger the
Re or �, the more likely is the occurrence of the spurious solutions. Here, we consider a
relatively thin layer to emphasize the development of the spurious eddies. With the given
set of parameters, all analysed schemes converge to the correct solution, as evidenced by the
�ne-grid solutions. We summarize our results below and, for the reader’s convenience, collect
the most representative experiments in Tables I and II.
For Godunov schemes there is no obvious categorization determining whether the third

eddy appears. In particular, the Rusanov (RU), LF, and HLLE schemes do not evince spu-
rious eddies even on the coarse grid. Although the FORCE schemes have substantial sim-
ilarities to RU and LF—none of them requires solving the Riemann problem, and they all
qualify as centred schemes—some variants of FORCE exhibit spurious eddy and some do

∗∗Both operators employ multidimensional positive de�nite advection transport algorithm (MPDATA) schemes [9]
and preserve sign or monotonicity of the transported variables.
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Table I. Spurious eddy experiments using Godunov schemes.

Scheme 128× 128 256× 256
RU Correct Correct
UHO Spurious Correct
LF Correct Correct
FORCE Spurious Correct

FORCE2 Correct Correct
HLLE Correct Correct

Table II. Spurious eddy experiments using NFT schemes.

Scheme 128× 128 256× 256
SL Correct Correct
SL-FCT Correct Correct
SL-SMG Correct Correct
SL-1 Spurious Spurious
EU Spurious Correct
EU-CMP Correct Correct
EU-TRS Correct Correct

not.†† Interestingly, the FORCE schemes that use higher-order interpolation (and so are less
di�usive than the equivalent schemes with the �rst-order interpolation) evince no spurious
eddies. In general, the appearance of the spurious eddy does not depend on whether the
‘third-order’ Lagrangian or MUSCL interpolation is employed in a Godunov-type method;
higher-order interpolation of the Godunov �ux also has no direct impact on the occurrence
of the spurious eddies. For example, the third-order version of the UHO results in spurious
vortices despite the higher accuracy of interpolation.
For standard second-order NFT schemes there is a categorization based on �ux-form versus

advective form. The latter (i.e. semi-Lagrangian; SL in Table II) do not produce the spurious
eddy, while the former (i.e. Eulerian; EU in Table II) do. However, altering �ne details of the
truncation errors may reverse either of these results. For instance, increasing the dissipation
of semi-Lagrangian schemes with �ux-corrected-transport (SL-FCT) or with a Smagorinsky
subgrid-scale turbulence model (SL-SMG), does not alter the correct solution. In contrast, the
use of some �rst-order upwinding inside the LE transport operator leads to spurious solutions
(SL-1). For Eulerian schemes, a noticeable sensitivity is to the de�nition of the advective
(as opposed to advected) velocity. For instance, replacing the explicit evaluation of advective
velocities at cell faces via arithmetic average with a compact average (i.e. implicit in space;

††In Table I, the two variants of the FORCE scheme di�er in details of implementation of higher-order interpolation
[8].
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EU-CMP), or with a weighted average over a broader (transverse) stencil (EU-TRS), may
eliminate or retard substantially the growth of the third eddy.
We conclude that the results depend on details of the non-linear truncation error that, in

turn, depends on the discretization of the momentum �ux. In the next section, we will employ
a heuristic analysis of the vorticity equation implied by the discretized momentum equations
of a generic upwind scheme, and identify unphysical terms originating from the truncation
error. We conjecture that these terms control the appearance of the spurious eddies. To verify
this hypothesis, we develop customized modi�cations of higher-order upwind methods and
verify their e�ectiveness in eliminating the spurious eddies.

4. VORTICITY ARGUMENT AND NUMERICAL MODIFICATIONS

Let us consider the inviscid system in (1). Using an explicit discretization in time while
retaining a continuous representation in space, keeping track separately of the advective and
advected velocities, and applying ∇× to the resulting idealized algorithm leads to the vorticity
equation (cf. [8])

!n+1 −!n
�t

+ ũ · ∇!=(ũxuy − uxũy) + (ṽxvy − vxṽy) (8)

where ũ and ṽ identify the advective velocities. Analytically, ũ= u so the rhs of (8) vanishes
identically, leaving the correct time-discretized vorticity equation for ideal two-dimensional
�ows. In discrete models, however, ũ �= u in general, and the two terms on the rhs of (8) do
not vanish. Typically, ũ= u+O(�x2), and the arti�cial vorticity forcing appears at the second
order.
Fully third-order-accurate discretizations may suppress the forcing on the rhs of (8). How-

ever, such approximations are not easy to develop for control-volume non-oscillatory schemes.
There are variants of MPDATA that converge at the third order [11], given a uniform ad-
vective �ow. For variable �ows these schemes are still second-order accurate, and they do
evince the spurious eddy in the problem at hand. However, combining these with a compact
de�nition of the advective velocity su�ciently reduces the magnitude of the rhs of (8), and
allows Eulerian MPDATA to recover the two-eddy solution.
Equation (8) by no means implies that suppressing the source necessarily requires a fully

third-order accurate discretization of the momentum equation in (1). Favourable cancellations
can e�ectively reduce the amplitude of the forcing at the second order, as is illustrated by
our results summarized in the preceding section. For simple algorithms such as standard
centred di�erences, it is feasible to derive the �nite-di�erence vorticity equation implied by
the discrete momentum equation, and to reveal the explicit form of the rhs of (8). In the case
of complicated algorithms like Godunov- or NFT-type methods this seems a hopeless task.
However, some insights have been gained by pursuing heuristic vorticity arguments for the
general form of the Godunov �ux [8].
The Godunov �ux, or a generic upwind scheme �ux, may be viewed as the sum of a

nondissipative centred-in-space �nite-di�erence approximation to the momentum �ux and a
Fickian �ux of the primitive variables with a di�usion coe�cient dependent on the �ow. In the
implied vorticity equation, similar to an eddy viscosity, the Fickian �ux engenders two types
of terms: equivalent Fickian �uxes of the vorticity and solenoidal-type �uxes that depend on
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various products of spatial derivatives of �ow variables. Following this notion, the originally
de�cient (spurious-eddies-wise) FORCE and UHO schemes have been modi�ed such as to
accentuate bene�ts of the Fickian �ux and diminish the magnitude of the eventual ‘baroclinic’
source. Technically, this is achieved by using low-order interpolation in the WST of (4); [8].
The modi�ed schemes produce the correct solution while adding only small extra dissipation
as measured by diverse benchmark tests.

5. REMARKS

Our extensive experience with hundreds of simulations has led us to three general propositions.
First, from the perspective of numerical analysis, an understanding of the occurrence of the
spurious eddy is buried in the details of the truncation error. In particular, it appears that the
lack of proper tensor invariance of the error (i.e. dependence on mesh orientation) is more
important than its magnitude. This is why the �ux-form schemes are more susceptible to the
third eddy. Second, from a phenomenological view point, there are two apparent mechanisms
of controlling the growth of the spurious eddy—either accelerating the roll-up of the primary
eddy or di�using the vorticity of the secondary eddy. This explains why the spurious eddy
can be controlled by either increasing or decreasing dissipation intelligently. Third, from the
applications view point, the absence of the spurious eddy is not tantamount to an accurate
solution. Detailed comparisons of the vorticity �elds and the dissipation histories show that
standard semi-Lagrangian NFT schemes are not necessarily more accurate than their Eulerian
counterparts (see also [3] for additional comparisons). In fact, the Eulerian schemes appear
more accurate as they follow a dissipation path consistent with highly resolved calculations.
Thus, while the ‘spurious-eddy’ test promotes understanding of an individual method, it is
not a discriminating benchmark for assessing that method’s performance in under-resolved
simulations.
The essence of the propositions is illustrated in Figures 2, and 3. Figure 2 shows late-time

solutions from high-resolution simulations on 512× 512 grid using an Eulerian (left panel) and
semi-Lagrangian (right panel) NFT schemes.‡‡ Comparing the centres of the eddies in both
panels shows that the semi-Lagrangian solution rolls up slightly faster. At lower resolution
both solutions roll up slower, but the di�erence between the Eulerian and semi-Lagrangian
result is more pronounced, and the Eulerian scheme exhibits a tendency for the third eddy (cf.
Figure 1 for coarser solutions on 256× 256 grid at much earlier time). On even coarser grids
the core of the primary eddy is unresolved and there is not su�cient detail to judge which
eddy rolls faster. Figure 3 displays the dissipation histories, corresponding to the simulations
depicted in Figure 2. Solid lines are for the negative of the total kinetic energy decay rate
−@〈e〉=@t, and dashed lines are for the negative of the viscous dissipation −〈Re−1u�u〉; where
〈 〉 denotes the domain mean integral value, and e is the kinetic energy. For the Eulerian
solution, the e�ective decay rate is uniformly larger than the viscous dissipation, documenting
the weak implicit dissipation of the numerical approximation. This is not the case for the semi-
Lagrangian solution, which �rst generates energy, and then later dissipates it at an increased
rate. The unphysical ‘kink’ in the semi-Lagrangian solution appears dramatically accentuated

‡‡Both panels use the same interval to contour vorticity �eld.
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Figure 2. Vorticity isolines for Eulerian (left) and semi-Lagrangian (right) solutions.
Negative valuesare dashed.

Time (sec)
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Figure 3. Dissipation histories for the solutions in Figure 2. Kinetic energy decay rate (solid lines) vs
viscous dissipation (dashed lines).

in coarser resolutions, although the solution remains free of the third eddy. The coarsely
resolved Eulerian scheme in contrast evinces the third eddy, while maintaining an energy
dissipation path consistent with the more resolved solution.
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